AULA DE SIMULAÇÃO DE EQUILÍBRIO DE HARDY-WEINBERG E EFEITO WAHLUND

Disciplina: Evolução – Ensino à Distância de Ciências Biológicas da UNICENTRO

Docente: Luciana Paes de Barros Machado

Observação: aula adaptada de Sene e colaboradores (2015)

- Sene, F. M., Silva, G. A. R., Manfrin, M. H. Simulações: Teorema de Hardy-Weinberg, Deriva Genética e Efeito Wahlund. **Genética na Escola**, v. 10, n. 1, p. 55-61, 2015.

Grupos 1 e 2:

Dois dados: 5 faces determinam o alelo "A" (1, 2, 3, 4 e 5), e 1 face determina o alelo "a" (6).

Grupos 3 e 4:

Dois dados: 4 faces determinam o alelo "A" (1, 2, 3 e 4), e 2 faces determinam o alelo "a" (5 e 6).

Grupos 5 e 6:

Dois dados: 3 faces determinam o alelo "A" (1, 2 e 3), e 3 faces determinam o alelo "a" (4, 5 e 6).

Grupos 7 e 8:

Dois dados: 2 faces determinam o alelo "A" (1 e 2), e 4 faces determinam o alelo "a" (3, 4, 5 e 6).

Grupos 9 e 10:

Dois dados: 1 face determina o alelo "A" (1), e 5 faces determinam o alelo "a" (2, 3, 4, 5 e 6).

Protocolo para a realização do experimento:

Material de aula

- 1. O grupo N°_____, representando uma população, contém 2 (dois) dados iguais;
- 2. As faces dos dados, conforme descrito anteriormente, representarão genes alelos presentes nos gametas de uma população;
- 3. Neste grupo o alelo **A** será representado em ____ faces do dado e o alelo **a**, em ____;
- 4. Como o grupo _____ representa uma população, a frequência dos alelos na população será:
 - alelo **A** = p = _____
 - alelo **a** = q = _____

Simulação:

- 1.- <u>Simulação</u> <u>da</u> <u>formação</u> <u>de</u> <u>zigotos</u>, isto é, do resultado da união de dois gametas, da próxima geração da população (geração 1):
- os dois dados devem ser jogados simultaneamente, e os resultados poderão ser: **A A** OU **A a** <u>ou</u> **a a**. Este sorteio deve ser repetido 100 vezes, sendo que os valores devem ser anotados de 10 em 10 sorteios na TABELA 1.

Relatório e análises a serem feitas

Parte 1

- a) descrever o experimento
- b) analisar os dados obtidos (Preencher Tabela 1):
 - 1.- calcular a frequência esperada dos genótipos na geração 1;
 - 2.- anotar os valores obtidos em cada amostra de 10;
 - 3.- calcular a frequência obtida dos genótipos na soma das amostras de 10;
- 4.- aplicar teste de \mathcal{X}^2 para verificar se os valores obtidos com a soma das 10 subamostras estão de acordo com o esperado pelo Equilíbrio de Hardy-weinberg;
- c) discuta os resultados;

Parte 2

- d) coloque seus dados na TABELA 2, geral;
- e) suponha que os 10 grupos representem uma *população grande* e que cada grupo represente uma *subpopulação* desta população, calcule:
 - 1.- a frequência gênica desta população grande;
 - 2.- a frequência genotípica esperada para a geração 1 dessa *população grande*;
- 3.- aplicar teste de \mathcal{X}^2 para verificar se os valores obtidos estão de acordo com o esperado pelo Equilíbrio de Hardy-Weinberg, nesta *população* grande.

TABELA 1.- Resultados obtidos:

Genótipos	AA	<u>A a</u>	<u>a a</u>	Total
				10
C				10
Geração 1				10
(resultado				10
obtido)				10
				10
				10
				10
				10
				10
TOTAL				100

Teste de \mathcal{X}^2 - nível de significância 0,05 e 2 graus de liberdade - \mathcal{X}^2 c = 5,991 H_0 = observado = esperado H_1 = observado \neq esperado

$$\chi^2 = \sum (\text{observado} - \text{esperado})^2 / \text{esperado}$$

AA	Aa	aa	Σ	Conclusão:
(obs-esp)² / esp =	(obs-esp)² / esp =	(obs-esp)² / esp =		H _o

TABELA 2 – Soma dos resultados:

Grupo	Freq		AA		<u> A a</u>		<u>a a</u>		Equilíbrio	
Nº	A	<u>a</u>	esper.	obtido	esper.	obtido	esper	obtido	sim ou não	χ^2
01										
02										
03										
04										
05										
06										
07										
08										
09										
10										

Freq		AA		<u>A a</u>		<u>a a</u>	
A	<u>a</u>	esper.	obtido	esper.	obtido	esper.	obtido

AA (obs-esp)² / esp =	Aa (obs-esp)² / esp =	aa (obs-esp)² / esp =	Σ	Conclusão:
				H _o